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Bio-signals

Project	challenge

sensors

Prediction

wearable
health companion

To	devise	wearable	and	autonomous	monitoring	solutions

in	order	to	predict	epilepsy	and	migraine	episodes

relying	on	real-time	analysis	of	bio-signals	events	

on	ultra-low-power	devices	
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Project	structure

- multimodal	
bio-signals	DBs

Observational	studies
- migraine	and	epilepsy
- experts	annotations

WP3

- features	extraction
- labelling
- self-aware	DSP

Predictive	DSP
- Data	interpretation
- Low-energy	software

WP1

- Virtual	platform
- Approximate	

Logic	Synthesis

Domain-specific	computing
- System-level	
- Component-level	

WP2
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WP1:	DSP

Multi-Modal	Epilepsy	Monitoring

Trigger	in	Autonomic	nervous	system

Epileptic	seizure

Affects	cardiac	and	respiratory	functions

Cardiac	function	is	not	enough!

Multi-modal	detection	system

11.92%	improvement	in	performance
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WP1:	DSP

Confident?

Yes

No

Xts

Complex	
classifier

Confidence	
model

Simple	
classifier

Self-Awareness:	Two-Level	Classification

Forooghifar,	F.,	Aminifar,	A.	and	Atienza	D.,	“Self-aware	wearable	systems	in	epileptic	seizure	detection.”	
Euromicro Conference	on	Digital	System	Design	(DSD),	2018,	pp.	426-432.

36%	improvement	in	execution	time
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WP1:	DSP

Self-Awareness:	Distributed	Monitoring

Observe

Level1	
machine	learning

(1)

Sensor	data

Fog

Observe

Level2
	machine	learning

(2)

Cloud

Level3
	machine	learning

(3)

17-86	days	improvement	in	battery	execution	lifetime
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WP1:	DSP

Self-Learning:	Lack	of	Labeled	EEG	Data

• State-of-the-art:	Supervised	Learning

Why	is	it	an	issue?

• Labeled	by	experts
• EEG	variability:	Need	personalized	data

Why	does	it	lack?

What	if	we	could	label	our	own	data	at	the	edge?

Pascual,	D.,	Aminifar,	A.	and	Atienza,	D.,	“A	Self-Learning	Methodology	for	Epileptic	Seizure	Detection	with	Minimally-Supervised	Edge	Labeling.”	
Design,	Automation	&	Test	in	Europe	Conference	&	Exhibition	(DATE),	2019,	 pp.	764-769.
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WP1:	DSP

Self-Learning	(Setting):

93.3%	labels	<	1	min	from	reference	
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WP1:	DSP

Self-Learning:	User	Informs	Using	Smartwatch

Our	minimally-supervised	seizure	
detection	reaches	92.6%	

geometric	mean	between	the	
sensitivity	and	specificity.

Noise	and	other
artifacts or	
seizures?

Epileptic
seizures

Normal	
brain

activities
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Hw accelerator

WP2:	Domain-specific	computing
Characteristics	of	apps
• task-level	parallelism
• computational	hotspots
• error-tolerance

Domain-specific	architecture	[1]
• multi-core
• reconfigurable	accelerator
• ultra-Low	VDD	+	error	monitoring
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[1]	Basu S,	Duch L,	Peón-Quirós M,	Atienza	D,	Ansaloni	G,	Pozzi L.	“Heterogeneous	and	Inexact:	Maximizing	Power	Efficiency	of	Edge	
Computing	Sensors	for	Health	Monitoring	Applications.” IEEE	International	Symposium	on	Circuits	and	Systems	(ISCAS),	May	2018.
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WP2:	Domain-specific	computing
Hotspot	identification	&	selection	
• Control	Flow	Regions
• Call	Graph	AccelCands

• RegionSeeker [1]
• AccelSeeker [2]

a) b) c)
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[1]	Zacharopoulos G,	Ferretti	L,	Giaquinta E,	Ansaloni	G,	
Pozzi L.	“RegionSeeker:	Automatically	Identifying	and	
Selecting	Accelerators	from	Application	Source	Code.”	IEEE	
Transactions	on	Computer-Aided	Design	of	Integrated	
Circuits	and	Systems	(TCAD).	March	2018.

[2]	Zacharopoulos G,	Di	Guglielmo G,	Ansaloni	G,	Carloni L,	
Pozzi L.	“Compiler-Assisted	Selection	of	Hardware	
Acceleration	Candidates	from	Application	Source	Code”
IEEE	International	Conference	on	Computer	Design	(ICCD),	
November	2019.
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WP2:	Domain-specific	computing
Hotspots	implementation	with	HLS
• Focus	on	regions	of	interest
• Traversing	a	multi-dimensional	representation

• Cluster-based	heuristic	[1]
• Lattice-based	heuristic	[2]

0 0.2 0.4 0.6 0.8 1
Latency

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
re
a

[1]	Ferretti	L,	Ansaloni	G,	Pozzi L.	“Cluster-Based	Heuristic	for	High	Level	Synthesis	Design	Space	Exploration.”	IEEE	Transactions	
on	Emerging	Topics	in	Computing	(TETC).	January	2018.	

[2]	Ferretti	L,	Ansaloni	G,	Pozzi L.	“Lattice-Traversing	Design	Space	Exploration	for	High	Level	Synthesis.” IEEE	International	
Conference	on	Computer	Design	(ICCD).	October	2018.
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WP2:	Domain-specific	computing
Hotspots	implementation	with	inexact	optimizations

à test	case:	quadratic	SVM	
for	seizure	detection	from	ECG

• Bit	truncation	&	algorithmic	simplification	[1]
• Approximate	Logic	Synthesis	[2]
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[1] Ferretti	L,	Ansaloni	G,	Pozzi L,	Aminifar A,	Atienza	D,	Cammoun L,	Ryvlin P.	“Tailoring	SVM	Inference	for	Resource-Efficient	ECG-Based	
Epilepsy	Monitors.” Design,	Automation	&	Test	in	Europe	Conference	&	Exhibition	(DATE),	March	2019.

[2]	Ansaloni	G,	Scarabottolo I,	Pozzi L.	“Judiciously	Spreading	Approximation	among	Arithmetic	Components	with	Top-Down	
Inexact	Hardware	Design.”	submitted	to	Design,	Automation	&	Test	in	Europe	Conference	&	Exhibition	(DATE),	March	2020.	



• Studies should be performed with	the	EEG	gold	standard

• Lack of	combining multiple	biosignals

• Data	is processed offline	and	not	in	real-time

• New	for	closed-loop systems

Detecting	epileptic	seizures

• Successfull	seizure	detection	integrating		sensors	for	accelerometry	and	extracerebral	biosignals	[3-5]

[1]		Aghei-Lasboo et	al.,	2016, [2]	Hoppe	et	al.,	2007 [3]	Van	de	Vel	et	al.,	2016;	[4]	Urate-Campo	et	al.,	2016;	[5]Aghei-Lasboo and	Fisher,	2016;	[6]	
Van	Andel et	al.,	2016;	[7]	Jory	et	al.,	2016	;		[8]	Paul	et	al.,	2018

Limits	

• Seizures	appear	at	random	moments,	can	result	in	accidents,	and	impact	key	social	and	
socioeconomic	aspects

• Evaluating	the	seizure	frequency	is	the	most	important	parameter	used	to	adjust	anti-epileptic	
treatment	[i.e.	1]

• Patients	fail	to	report 85.8%	of	night	time	and	30-50%	of	day-time	seizures	[2]

WP3:	observational	studies



Clinical	epilepsy	studies-CHUV

Pilot	with	long-term
video EEG

Clinical	trial	
with long-term video EEG

Clinical	trial	
in	ambulatory

context

WP3:	observational	studies
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Develop	a	multimodal	automatic	seizure	detection	algorithm based on	extracerebral	symptoms

• Classify features	from	ACC,	ECG,	PPG,	Sp02,	and	EDA	in	accordance	with the	Video-EEG	based
onset	of	seizures

• Validity (sensitivity	and	specificity)		
• Time	course	of	biosignals for	the	preictal,	ictal	and	postictal periods

MyPreHealth	observational	pilot	study:	Machine	learning	based	focal	and	
secondary	GTC	seizure	detection	algorithm	using	a	multimodal	approach	in	

epilepsy	patients.	

Shimmer	ECG	and	GSR Video-EEG

Project	population:	
• 3/13	adult	

patients	
undergoing	
Video-EEG	
monitoring	in	the	
Monitoring	Unit	

• focal	seizures	and	
generalized
convulsion

• 34	seizures
recorded

WP3:	observational	studies
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MyPreHealth	observational	pilot	study:	Machine	learning	based	focal	and	
secondary	GTC	seizure	detection	algorithm	using	a	multimodal	approach	in	

epilepsy patients

EEG:																																																																ECG:	

• Single patient
• Analysis of ECG signal
• Bagged tree classifier for automated seizure detection
• Windows of 3 min before and 3 min after seizure
• 93% detection rate with wearable ECG

WP3:	observational	studies



• Acute	migraine	treatment	is	encouraged	as	early	as	possible	after	a	migraine	
episode	has	been	detected

Predicting	migraine	attacks

WP3:	observational	studies

Clinical	trial	in	ambulatory contextPilot	in
ambulatory context
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MyPreHealth	observational	pilot	study	II:	Wearable	device	and	electronic	diary	study	
for	early	detection	of	migraine	onset

• To	detect and	illustrate the	time	course	of	changes	of	biometric variables	
before,	during,	and	after the	occurrence	of	migraine	pain

• Evaluate	the	effect of	the	average time	lapse	between symptom onset and	
drug administration

Project	
population:
• 20	patients	
• Chronic

migraine	
• At	least	two

migraine	attacks
per	month

E4	wristband My	PreHealth migraine	diary	app

WP3:	observational	studies
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A	collaborative	effort

Domain-specific	computing

Predictive	DSP

Observational	studies

data	
acquisitions

IT	
support

SW	&	
algorithms

profiling	&
analysis
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Publications

Journal	articles:	

[j1]	Duch L,	Basu S,	Peón-Quirós M,	Ansaloni	G,	Pozzi L,	Atienza	D.	“i-DPs	CGRA:	An	Interleaved-Datapaths Reconfigurable	
Accelerator	for	Embedded	Bio-signal	Processing.”	IEEE	Embedded	Systems	Letters,	June	2018.
[j2]	Zacharopoulos G,	Ferretti	L,	Giaquinta E,	Ansaloni	G,	Pozzi L.	“RegionSeeker:	Automatically	Identifying	and	Selecting	Accelerators	
from	Application	Source	Code.” IEEE	Transactions	on	Computer-Aided	Design	of	Integrated	Circuits	and	Systems	(TCAD).	March	2018.
[j3]	Ferretti	L,	Ansaloni	G,	Pozzi L.	“Cluster-Based	Heuristic	for	High	Level	Synthesis	Design	Space	Exploration.” IEEE	Transactions	on	
Emerging	Topics	in	Computing	(TETC).	January	2018.
[j4]	Forooghifar F,	Aminifar A,	Cammoun L,	Wisniewski	I,	Ciumas C,	Ryvlin P,	Atienza	D.	“A	Self-Aware	Epilepsy	Monitoring	System	for	
Real-Time	Epileptic	Seizure	Detection.”Mobile	Networks	and	Applications,	2019.

4	Journal	and	10	conference	papers in	all	fields	targeted	by	MyPreHealth
• Bio-signals	processing	and	analysis
• Low-power	architectures	for	health	monitoring
• Inexact	computing	for	health	applications	
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Publications

Conference	papers:

[c1]	Basu S,	Duch L,	Peón-Quirós M,	Atienza	D,	Ansaloni	G,	Pozzi L.	“Heterogeneous	and	Inexact:	Maximizing	Power	Efficiency	of	Edge	
Computing	Sensors	for	Health	Monitoring	Applications.” IEEE	International	Symposium	on	Circuits	and	Systems	(ISCAS),	May	2018.
[c2]	Scarabottolo I,	Ansaloni	G,	Pozzi L.	“Circuit	carving:	A	methodology	for	the	design	of	approximate	hardware.” IEEE	Design,	
Automation	&	Test	in	Europe	Conference	&	Exhibition	(DATE).	March	2018.	
[c3]	Forooghifar F,	Aminifar A,	Atienza	D.	“Self-Aware	Wearable	Systems	in	Epileptic	Seizure	Detection.” Euromicro Conference	on	
Digital	System	Design	(DSD).	August	2018.	
[c4]		Sopic D,	Aminifar A,	Atienza	D.	”e-Glass:	A	Wearable	System	for	Real-Time	Detection	of	Epileptic	Seizures.” International	
Symposium	on	Circuits	and	Systems	(ISCAS).	May	2018.
[c5]	Scarabottolo I,	Ansaloni	G,	Pozzi L.	“Work-in-Progress:	A	Partitioning	Strategy	for	exploring	Error-Resilience	in	Circuits.”
International	Conference	on	Compilers,	Architecture	and	Synthesis	for	Embedded	Systems	(CASES),	September	2018.
[c6]	Ferretti	L,	Ansaloni	G,	Pozzi L.	“Lattice-Traversing	Design	Space	Exploration	for	High	Level	Synthesis.” IEEE	International	
Conference	on	Computer	Design	(ICCD).	October	2018.
[c7]	Scarabottolo I,	Ansaloni	G,	Pozzi L.	“Partition	and	Propagate:	an	Error	Derivation	Algorithm	for	the	Design	of	Approximate	Circuits.”
Design,	Automation	Conference	(DAC),	June	2019.
[c8]	Ferretti	L,	Ansaloni	G,	Pozzi L,	Aminifar A,	Atienza	D,	Cammoun L,	Ryvlin P.	“Tailoring	SVM	Inference	for	Resource-Efficient	ECG-
Based	Epilepsy	Monitors.” Design,	Automation	&	Test	in	Europe	Conference	&	Exhibition	(DATE),	March	2019.
[c9]	Pascual D,	Aminifar A,	Atienza	D.	“A	Self-Learning	Methodology	for	Epileptic	Seizure	Detection	with	Minimally-Supervised	Edge	
Labeling.” In	Design,	Automation	&	Test	in	Europe	Conference	&	Exhibition	(DATE)	(pp.	764-769),	2019.
[c10]	Zacharopoulos G,	Di	Guglielmo G,	Ansaloni	G,	Carloni L,	Pozzi L.	“Compiler-Assisted	Selection	of	Hardware	Acceleration	
Candidates	from	Application	Source	Code” IEEE	International	Conference	on	Computer	Design	(ICCD),	November	2019.
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Ongoing	and	future	work

WP1
• Refinement	of	the	detection/prediction	algorithms	

based	on	multi-modal	data	acquired	in	WP3
• Automatic	per-person	DSP	tuning

WP2
• Concurrent	accelerators	selection	and	implementation
• Design	of	accelerators-rich	virtual	platforms	for	

bio-signal	analysis

WP3
• Completion	of	acquisitions	from	migraine	

and	epilepsy	patients
• Publication	of	anonymized	database
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Extensions

WP1
• Fog	computing	and	federated	ML	at	the	edge	for	

personalized	health	monitoring
• Interpretable	AI	for	the	co-design	of	epilepsy	detection	

and	prediction	algorithms

WP2
• Self-aware	QoS tuning	strategies	via	hardware	

approximation
• System	and	component	(accelerator)	levels

WP3
• Transfer	Learning:	combining	retrospective	epilepsy	

database	and	acquired	data	from	wearable	to	improve	
detect/predict	episodes
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Thank	you!!


